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What are bandits?

Time 1 2 3 4 5 6 7 8 9 10
Arm1 | $1 $0 $1 $1 S0
Arm 2 S1 SO

To accumulate as many rewards, which arm would you choose next?

Select arms with less-observed times
to learn the unknown knowledge

Select arms with higher rewards
to accumulate more rewards

—— Exploitation V.S. Exploration —

Over exploration leads to high costs
Insufficient exploration prevents from finding the optimal arm 2



Interactive machine learning
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Multi-armed bandits (MAB)
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° A p|ayer and K armsﬁ ltems, products, movies, companies, ... }
e Fach arm a has an unknown reward distribution P] with unknown

mean U;
,Ll] <’L CTR, preference value, ... }

e Ineachroundt = 1,2, ...:
* The agent selectsanarm A; € {1,2, ..., K}
* Observes reward X;~Py,

Click information, satisfaction, ... }




Objective

* Maximize the expected cumulative reward in T rounds
T T
t=1 t=1

* Minimize the regret in T rounds
* Denote j* € argmax; u; asthe bestarm

T
Reg(T) =T+ —E| ) ua]



Explore-then-commit (ETC)

* There are K = 2 arms (choices/plans/...)

* Suppose

* Uy > U
* A=y — Uy [ A/B testing ]

e

e Explore-then-commit (ETC) algorithm

* Select each arm h times b rounds
* Find the empirically best arm A for a,
* Choose A; = A for all remaining rounds

T — 2h rounds
for the better
performed one



Explore-then-commit (cont.)

h rounds

* Regret analysis: for a,

T
Reg(T) =T - — E [z Sample mean
g(T) U1 t:1ll,4t/(.
=hA+ (T —2h) - A-P(1 < {i;
= hA + (T — 2h) - A - P((fp — pp) — (la—p1) > A)

hA?
<hA+T-A- exp| — 2 » Hoeffding’s inequality

Exploration Exploitation

logT 2
<0 ( Oi )\[ Choose h = [:—Zlog (%)] }

o Reg(T) — .Q(TA) ifh =100 mknowledge of A }

* Reg(T) =Q(TA)ifh=T/10

60

Expected regret

50

T — 2h rounds
for the better
performed one
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Only with the best choice of h
the regret would be smallest
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A soft version: e-greedy

* For each round t
& € (0,1)
* With probability &;, exploration (uniformly random select arms)

* With probability 1 — &;, exploitation (select the best performed arm
so far)

* When & = min {1, m%}’ Reg(T) = 0 (loi T)

Demo: https://cse442-17f.github.io/LinUCB/
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Upper confidence bound (UCB)

* With high probability = 1 — § 8y Hoeffding’s inequality |
A logl/6 log1/6 °
A [ A i T A 7 o e
/ \ ]\ a\ J
/_ - Arm1  Arm2
Sample mean Number of selections of q;

* Optimism: Believe arms have higher rewards, encourage exploration
* The UCB value represents the reward estimates

Upper confidence bound (UCB) ]

* For each round t, select the arm

\
~ log1/6
A(t) € argmax e A + >

AN
Exploitation Exploration 10




Upper confidence bound (UCB) (cont.)

* Assume arm a, is the best arm

* If sub-optimal arm q; is selected . I
* w/ high probability o z N
iy < UCB, < UCB; < p; +2 [28210 ® True mean
Tj(t) Arm1 Arm 2

. log1/é6 L o
= 2 / 0 = Ajr= g — U

log 1/6)

e = T;(t) < 0(
]( ) A?Twadaptive totimet }
* By choosing 06 = 1/T, cumulative regret:
A= minj,, 4 }

logT _ |
0 2 _ A2 . Aj = O(Klog T/A) Without knowing A
J#1 j
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Thompson sampling (TS)

* Assume each arm has prior Gaussian(0,1)

* Sample an estimate fi; from the posterior distribution

1

0.025

lower
limnit

fij~Gaussian | fi;,

Exploitation

1+ T;(¢)

Exploration

* Select the arm A(t) € argmax e[gi;

e Usually outperforms UCB

https://learnforeverlearn.com/bandits/
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* Also have O(Klog T /A) regret 7

Average regret for the 10-armed Beta Bandit
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